Abstract: Structural features like faults, shear zones, plugs, dykes and deformities. Present study aims to evaluate and map the altered mineral deposits by analysis of multispectral (Enhanced Thematic Mapper (ETM+)) and hyperspectral (Hyperion) datasets. Various thematic maps were prepared from the ETM+ and ASTER Digital Elevation Model (ASTERDEM), which were used as the input for the finding the final alteration zone mapping. Principal Component Analysis (PCA) and band ratio were also applied to the ETM+ for the detection of altered mineral deposits. A Hyperion image was first compensated for atmospheric effects after the removal of the bad bands from the dataset. Minimum Noise Fraction (MNF) transformation was applied to reduce the data noise and spectral dimensionality. Pixel Purity Index (PPI) and n-Dimensional visualization were used for extracting the pure pixels. These pure pixels are then compared using a mineral spectral library distributed from United States Geological Survey (USGS) as a reference and are used in Spectral Angle Mapping (SAM) to classify the image for identifying the occurrences of same minerals. The results revealed the potential use of Hyperion data over multispectral data in precise altered mineral identification and mapping.

Keywords: Alteration zones, Principal Component Analysis, Band ratio, Minimum Noise Fraction, Pixel Purity Index, Spectral Angle Mapping.

1. Introduction

The social and economic development of a nation depends on its capacity to utilize its natural resources. The main demand in the field of mineral exploration is to use new technology to discover new/additional mineral deposits in cost effective manner. The art of remote sensing aids faster identification of mineralized zones and metallogenic belts either directly or indirectly. Alteration zones are created around a number of the structural features like faults, shear zones, plugs, dykes and unconformities, and are defined as either alteration haloes, where the pre-existing rock property values are enhanced or depleted, or as replacement zones.

Alteration zone constitute one of the most important guides for mineral exploration. The major minerals in the alteration zone include carbonates, iron oxide, hydroxyl bearing minerals and tectosilicates. Remote sensing data is of invaluable use in mapping hydrothermally altered rocks because many of the alteration minerals produced have distinctive absorption features caused by the presence of OH and other hydroxyl bonds: Mg-OH and Al-OH, particularly in the shortwave infrared part of the spectrum (2000–2400 nm) (Hunt 1977). Hence, the present study aims to evaluate and map the altered mineral deposits by analysis of multispectral and hyperspectral data.

2. Study area and Geological setting

The study area (Fig 1) is in the northeast Nigeria, located on the northern edge of the Jos Plateau, with latitudes 9°3’ and 12°3’ N and longitudes 8°50’ and 11° E. The state is bordered by seven states, Kano and Jigawa to the North, Taraba and Plateau to the South, Gombe and Yobe to the East and Kaduna to the West. The Study area is a part of the crystalline rock area in central northern Nigeria. The hill ranges are developed on basement complex rocks in an area which is also characterized by extensive plateau surfaces and volcanic extrusions. The base of the hill ranges is generally at the 600 m level, while peaks rise to 700 m on the hills, and 729 m on the Bunsil hills. A central high plain (of the Hausa land) area belonging to the Kerri Kerri and Gombe sandstone and shale of Tertiary Age.

3. Material and methods

The materials used for this study include the topographical map of Nigeria, geological map, ASTER Digital Elevation Model, Landsat Enhance Thematic Mapper (ETM+) and Hyperion dataset. The Table 1shows the information of the data used. Radiometrically corrected Hyperion data onboard EO-1 satellite Level 1R data is used for the current study.

3.1 Methodology

The whole image processing operation was done in ENVI 4.2 software. Methodology adopted for the present study is depicted in fig 2. Various analyses were carried out for the identification of the structural
features and to examine the terrain. The Digital Elevation model obtained from ASTERDEM was used to extract the slope aspect, shaded relief and drainages in the area. ETM+ and Hyperion data were used for analysis for the identification of altered zones. ETM+ image data covering the area to which the Hyperion dataset is available was used for various image processing technique such as PCA, a band ratio for the identification of hydrothermal zones.

Table 1: Materials and data used

<table>
<thead>
<tr>
<th>Data Used</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topographical map of</td>
<td>Scale 1:100,000</td>
</tr>
<tr>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>Geological map of</td>
<td>Scale 1:50,000</td>
</tr>
<tr>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>ASTER Digital</td>
<td>30m spatial resolution</td>
</tr>
<tr>
<td>Elevation Model</td>
<td></td>
</tr>
<tr>
<td>Enhance Thematic</td>
<td>30 m spatial resolution (band 1-5 and 7), 60 m (band 6) and 15 m (band 8).</td>
</tr>
<tr>
<td>Mapper (ETM+)</td>
<td></td>
</tr>
<tr>
<td>Hyperion USGS</td>
<td>242 spectral bands, 10 nm spectral resolution and 30 m spatial resolution</td>
</tr>
<tr>
<td>format L1R Dataset.</td>
<td></td>
</tr>
</tbody>
</table>

4. Observations and Results

The Digital Elevation Model (Fig. 3) shows the elevation variation in the area. The drainage map shows the different patterns usually control by lithological and structural nature of the area. The drainage density derived from drainage map is shown in fig. 5 which further enhances the lithology and surface structures of the area.
Fig 3. ASTERDEM

Fig 4. Drainage map

Fig 5: Drainage Density map

Fig 6. Slope map

Fig 7. Superimposed Shaded relief maps

Fig 8. Lineament-fault map
Mapping of Hydrothermal Altered Mineral Zones by Multispectral and Hyper-spectral Data Analysis - A Case Study of Bauchi, Nigeria

4.1 Band Ratio and Color Composite

The application of band ratio and creation of false colour composite is based on known spectral properties of rocks and alteration minerals in relation to the selected spectral bands. The ratio of the region of interest imageries (fig 12 & 13) were obtained using the following band ratio: Chica – Olma ratio and Kauffman ratio. With the Chica – Olma ratio technique, the band ratios 5/7:5/4:3/1 were obtained and assigned the red, green and blue channels respectively to produce a false colour composite. Similarly band ratios 7/4:4/3:5/7 was obtained for Kauffman ratio technique, (Bodruddoza Mia and Yasuhiro Fujimitsu 2012).

4.2 Principal Component Analysis

To suppress and separate the erroneous effects of vegetation and unveiling the lithology of the tropical terrain the principal components analysis (PCA) was implemented on specific spectral indices of ETM+ data. Vegetation index (band ratio of 4/3), clay minerals index (band ratio of 5/7), ferric iron oxide index (band ratio of 3/1), and ferrous iron oxide index (band ratio of 5/4) were used to generate PCA image components. The image eigen vectors and eigen values were obtained from PCA using covariance matrix on indices.
4.3 Bad bands removal

The Hyperion VNIR sensor has 70 bands, and the SWIR has 172 bands providing 242 potential bands. A number of the bands were intentionally not illuminated and others (mainly in the overlap region between the two spectrometers) correspond to areas of low sensitivity of the spectrometer materials (EO1 User guide 2003). The totals of 196 bands were used for the study after removal of unusual bands.

4.4 Atmospheric correction

The Quick Atmospheric Correction model (QUAC) is used in this study to remove this effect and convert the radiance data to reflectance data (Fig15). This algorithm performs automated correction of data in solar reflected region (0.4-2.5um). It creates an image of retrieved surface reflectance, scale into two byte signed integer using reflectance scale factor of 10,000.

4.5 Minimum noise fraction Transformation (MNF)

MNF transformation determines the inherent dimensionality of image data, to segregate noise in the data, and to reduce the computational requirements for subsequent processing. This is a two-step process. First transformations compute the covariance matrix to decorrelate and rescale the noise in the data and its breaks the band to band correlation. Then a second transformation computes the Eigen values, where bands having Eigen values much greater than one contains coherent image and having Eigen values near one contain noise. Using the coherent portion, noise is removed from data (Fig 16). These coherent images will be taken only for further data analysis.

(a) Before atmospheric correction showing vegetation spectral plot

(b) After atmospheric correction showing vegetation spectral plot

Fig 15. Showing scene 1 (a) before QUAC atmospheric correction model, (b) after correction

4.6 Pixel Purity Index (PPI)

The Pixel Purity Index (PPI) is a means of finding the most “spectrally pure,” or extreme, pixels in multispectral and hyperspectral images (Boardman et al., 1995). Brighter pixels in the PPI image represent more spectrally extreme pixel and indicate pixels that are more spectrally pure. Darker pixels are less spectrally pure. The PPI is typically run on an MNF transform result; excluding the noise bands. The results of the PPI (Fig.17) are used as input into n-D Visualizer.
5. Results and Discussions

After analyzing the results of PCA transformation for specific spectral indices of ETM+ data, considering magnitude and sign of the eigenvector loadings and percentage of eigenvalues for two scenes, it was realized that the first principal component (PC1) of accounts 87.25 percent of total eigenvalue, which is higher value among the PCA images in the scene. A PCA image with higher eigenvalue contains most of the spectral information in the scene. All of the eigenvector loadings for the PC1 are positive, thus the differentiation between materials (vegetation and alteration minerals) using the specific spectral indices in the PC1 image will be extremely difficult. PC2 show high positive value for ferric iron index (3/1) because of the less vegetation cover in the scene.

Eigen vector loadings for the vegetation index (-0.077) and positive eigenvector loadings for the clay mineral index (0.670). The band ratio indices were applied to PCA images to obtain the potential altered zone (Fig 14). Finally mineral map was created using spectral angle mapper classifier algorithm in which three mineral types were identified in the area (Fig. 18). The minerals are vermiculite, montmorillonite and koasmec (koalonite+smectite).

6. Conclusions

The results presented in this study demonstrate the potential of hyperspectral image data over multispectral data in precise mapping of altered mineral zones. Structurally controlled mineralization like clay mineral has been detected using hyperspectral data in this study. The same methodology can be further adopted for mapping of other altered minerals. Having the same spatial resolution in compare to other multispectral data, the Hyperion data provided the advantage of high-quality reflectance spectra of the surgical features. The limits of the Hyperion imagery for mineral mapping are the apparent strips in several bands even those important absorption bands and the low signal-to-noise ratio of imagery.

It can be concluded that the Hyperion data has the capability of identifying the precise altered mineral because of its high spectral information when compared to the ETM+ which is only to map the alteration zones.

References


